【精选】数学说课稿模板集锦8篇
作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,借助说课稿可以更好地组织教学活动。快来参考说课稿是怎么写的吧!下面是小编收集整理的数学说课稿8篇,欢迎阅读,希望大家能够喜欢。
数学说课稿 篇1一、教材分析
1、教材的地位和作用
《菱形》是《四边形》这一章继《矩形》之后研究的第二种特殊的平行四边形,是学生在学习了平行四边形的性质与判定的基础上,对平行四边形知识的延续和深入,同时也是后面学习正方形等知识的基础,起着承前启后的作用。
2、教学重、难点
重点:菱形的概念、性质及其应用
难点:经历"操作——观察——思考——归纳——总结"得出菱形的性质。
3、教学目标
根据新课程标准和本节内容的特点,我从以下三个方面制定了本节课的教学目标。
a、知识与技能:能理解菱形的定义及其性质,并会初步运用菱形的性质进行简单的计算和推理论证。
b、过程与方法:在探索菱形性质的过程中,让学生经历"观察——思考——归纳——总结"的数学思想,进一步增强学生的自主探究意识。
c、情感态度与价值观:通过学生自己动手操作,观察分析,得出结论,激发学生的学习兴趣,提高学生的审美情趣。
二、教法分析与学法指导
本节课我准备采用"激趣——探究——运用——归纳"为主线的教 ……此处隐藏15129个字……求满足 =m +n 的实数m,n;
练:(20xx江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2平面向量共线的坐标表示
例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为 ; 的最大值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )
【思考】两非零向量 ⊥ 的充要条件: =0 .
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的最大值为( )
A.6 B.7 C.8 D.9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?