
线段、射线、直线教案
作为一名优秀的教育工作者,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?下面是小编为大家整理的线段、射线、直线教案,仅供参考,希望能够帮助到大家。
线段、射线、直线教案1教材分析:
本课教材内容包括直线、线段、射线和角的认识,数学教案-直线、线段、射线和角。这部分内容是在学生初步认识了线段、角和直角的基础上教学的,是几何形体知识中最基本的概念之一,也是认识三角形等图形的知识以及进一步学习几何形体知识的基础。
学情分析:
学生学习长度单位和角的初步认识时,已会直观描述它们的特点。本课尊重学生的认知规律,从“有限”到“无限”,引导学生认识直线和射线,掌握角的概念。
一、教学内容:苏教版小数教材第七册P109-110线段、射线、直线和角。
二、教学目标:
1、认知目标:
使学生进一步认识直线、线段;认识射线;知道直线、线段、射线的区别;认识角和角的符号,知道角的各部分名称、比较角的大小。
2、能力目标:培养学生的观察、对比、综合、记忆及动手协作能力。
3、情感目标:教学生用科学的眼光观察事物,从而培养学生的学习兴趣。
三、教学重难点:
1、重点:认识射线,知道射线与直线、线段的区别和联系;在射线概念的基础上说明角的概念,渗透运动的观点 ……此处隐藏20063个字……教案15
【学习目标】
1.了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段;
2.能进行简单的线段长度计算.
【学习重、难点】线段中点的概念及简单的计算.
【导学提纲】
想一想:
怎样比较两个同学的高矮?把你的想法和同学们交流.
试一试:
如图,已知两点A、B.
(1)画线段AB;
(2)延长线段AB到点C,使BC=AB.
你是怎么得到线段AB的?你是如何画线段BC等于线段AB的?把你的想法和同学们交流.
我们把上图中的点B叫做线段AC的中点(middlepoint)
如果点B是线段AC的中点,那么线段AB、BC、AC之间存在怎样的大小关系?试一试用符号语言表示.
(3)反向延长线段AB到点D,使DA=AB.
想一想:点A、B分别是哪条线段的中点?
自我尝试:
1.已知线段AB=8cm,C是AB的中点,点D在CB上,DB=2.5cm.求线段AC、CD的长度.变式1:已知线段AB=8cm,点C在线段AB上,D是线段AC的中点,AD=2.5cm.求线段AC、BC的长度.
变式2:已知线段AB=8cm,点C是线段AB上任意一点,点M,N分别是线段AC与线段BC的中点,求线段MN的长.
【反馈矫正】
1.课本P151习题6.1第3题.
2.《补充习题》P971、3、4.
【迁移拓展】
已知线段AB=8cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长。